p-arton model for modular cusp forms arXiv:2103.02443

Parikshit Dutta

Department of Physics
Asutosh College, Kolkata
Affiliated to the University of Calcutta
Work done in collaboration with
Debashis Ghoshal
J.N.U. New Delhi
24.05.2021 / p-adics 2021

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets

2 Vectors for modular cusp forms

- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Modular Cusp forms

- A modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ of weight k and level N associated to a Dirichlet character χ_{N} modulo N, which is holomorphic on the upper half plane \mathbb{H} and transforms under the action of $\Gamma(N)$ a discrete subgroup of $S L(2, \mathbb{Z})$

$$
\begin{equation*}
f(\gamma z)=\chi_{N}(d)(c z+d)^{k} f(z) \tag{1}
\end{equation*}
$$

- Using $z \rightarrow z+1$ above, one sees that a modular form f of the full modular group has the following Fourier expansion in terms of $q=e^{2 \pi i z}$

- A cusp form is a modular form that vanishes at $\operatorname{Im}(z) \rightarrow \infty$ or equivalently $q \rightarrow 0$. Implies $a(0)=0$.

Modular Cusp forms

- A modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ of weight k and level N associated to a Dirichlet character χ_{N} modulo N, which is holomorphic on the upper half plane \mathbb{H} and transforms under the action of $\Gamma(N)$ a discrete subgroup of $S L(2, \mathbb{Z})$

$$
\begin{equation*}
f(\gamma z)=\chi_{N}(d)(c z+d)^{k} f(z) \tag{1}
\end{equation*}
$$

- Using $z \rightarrow z+1$ above, one sees that a modular form f of the full modular group has the following Fourier expansion in terms of $q=e^{2 \pi i z}$:

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \tag{2}
\end{equation*}
$$

- A cusp form is a modular form that vanishes at $\operatorname{Im}(z) \rightarrow \infty$ or equivalently $q \rightarrow 0$. Implies $a(0)=0$.

Modular Cusp forms

- A modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ of weight k and level N associated to a Dirichlet character χ_{N} modulo N, which is holomorphic on the upper half plane \mathbb{H} and transforms under the action of $\Gamma(N)$ a discrete subgroup of $S L(2, \mathbb{Z})$

$$
\begin{equation*}
f(\gamma z)=\chi_{N}(d)(c z+d)^{k} f(z) \tag{1}
\end{equation*}
$$

- Using $z \rightarrow z+1$ above, one sees that a modular form f of the full modular group has the following Fourier expansion in terms of $q=e^{2 \pi i z}$:

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \tag{2}
\end{equation*}
$$

- A cusp form is a modular form that vanishes at $\operatorname{Im}(z) \rightarrow \infty$ or equivalently $q \rightarrow 0$. Implies $a(0)=0$.

Dirichlet series of a Cusp form

- A Dirichlet series of a cusp form is defined by the coefficients in its q-expansion :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \tag{3}
\end{equation*}
$$

- This can be obtained by the Mellin transform of the cusp form

$$
L(s, f)=\frac{(2 \pi)^{s}}{\Gamma(s)} \int_{0}^{\infty} d y y^{s-1} f(i y)
$$

- An example is the discriminant function which is a cusp form of weight 12:

$$
\begin{equation*}
\Delta(z)=q \prod_{n=1}\left(1-q^{n}\right)^{24} \tag{5}
\end{equation*}
$$

Dirichlet series of a Cusp form

- A Dirichlet series of a cusp form is defined by the coefficients in its q-expansion :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \tag{3}
\end{equation*}
$$

- This can be obtained by the Mellin transform of the cusp form :

$$
\begin{equation*}
L(s, f)=\frac{(2 \pi)^{s}}{\Gamma(s)} \int_{0}^{\infty} d y y^{s-1} f(i y) \tag{4}
\end{equation*}
$$

- An example is the discriminant function which is a cusp form of weight 12:

Dirichlet series of a Cusp form

- A Dirichlet series of a cusp form is defined by the coefficients in its q-expansion :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \tag{3}
\end{equation*}
$$

- This can be obtained by the Mellin transform of the cusp form :

$$
\begin{equation*}
L(s, f)=\frac{(2 \pi)^{s}}{\Gamma(s)} \int_{0}^{\infty} d y y^{s-1} f(i y) \tag{4}
\end{equation*}
$$

- An example is the discriminant function which is a cusp form of weight 12:

$$
\begin{equation*}
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \tag{5}
\end{equation*}
$$

- It exhibits a q expansion :

$$
\begin{equation*}
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n} \tag{6}
\end{equation*}
$$

- The coefficients $\tau(n)$ satisfy the following properties

$$
\begin{align*}
& \tau^{(m)} \tau^{\prime}(n)=\tau^{\prime}(m n) \text { if } \operatorname{god}(m, n)=1 \tag{7}\\
& \tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-1}\right) m>0 \tag{8}\\
& |\tau(p)| \leq 2 p^{\frac{11}{2}} \tag{9}
\end{align*}
$$

- In general the coefficients $a(n)$ of a modular form of weight k and level N satisfy :

$$
\begin{align*}
& a(m) a(n)=a(m n) \text { if } \operatorname{gcd}(m, n)=1 \tag{10}\\
& a\left(p^{m+1}\right)=a(p) a\left(p^{m}\right)-\chi(p) p^{k-1} a\left(p^{m-1}\right) m>0
\end{align*}
$$

- It exhibits a q expansion :

$$
\begin{equation*}
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n} \tag{6}
\end{equation*}
$$

- The coefficients $\tau(n)$ satisfy the following properties :

$$
\begin{align*}
& \tau(m) \tau(n)=\tau(m n) \text { if } \operatorname{gcd}(m, n)=1 \tag{7}\\
& \tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-1}\right) m>0 \tag{8}\\
& |\tau(p)| \leq 2 p^{\frac{11}{2}} \tag{9}
\end{align*}
$$

- In general the coefficients $a(n)$ of a modular form of weight k and level N satisfy
$a(m) a(n)=a(m n)$ if $\operatorname{gcd}(m, n)=1$
- It exhibits a q expansion :

$$
\begin{equation*}
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n} \tag{6}
\end{equation*}
$$

- The coefficients $\tau(n)$ satisfy the following properties :

$$
\begin{align*}
& \tau(m) \tau(n)=\tau(m n) \text { if } \operatorname{gcd}(m, n)=1 \tag{7}\\
& \tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-1}\right) m>0 \tag{8}\\
& |\tau(p)| \leq 2 p^{\frac{11}{2}} \tag{9}
\end{align*}
$$

- In general the coefficients $a(n)$ of a modular form of weight k and level N satisfy :

$$
\begin{align*}
& a(m) a(n)=a(m n) \text { if gcd }(m, n)=1 \tag{10}\\
& a\left(p^{m+1}\right)=a(p) a\left(p^{m}\right)-\chi(p) p^{k-1} a\left(p^{m-1}\right) m>0
\end{align*}
$$

- Using these properties, $L(s, f)$ exhibits an Euler product :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{p \in \text { primes }}\left(1-a(p) p^{-s}+\chi(p) p^{k-1} p^{-2 s}\right)^{-1} \tag{11}
\end{equation*}
$$

- Note the quadratic form in the denominator.
- The motivation of our work is to find a dual description of the q-expansion via p-adic wavelets, which we shall call p-artons, and associate the Euler factor of the corresponding L-function with the Mellin transform of the p-artons.
- The relation of the construction discussed, to the classical theory of Automorphic forms is not studied.
- Using these properties, $L(s, f)$ exhibits an Euler product :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{p \in \text { primes }}\left(1-a(p) p^{-s}+\chi(p) p^{k-1} p^{-2 s}\right)^{-1} \tag{11}
\end{equation*}
$$

- Note the quadratic form in the denominator.
- The motivation of our work is to find a dual description of the q-expansion via p-adic wavelets, which we shall call p-artons, and associate the Euler factor of the corresponding L-function with the Mellin transform of the p-artons.
- The relation of the construction discussed, to the classical theory of Automorphic forms is not studied.
- Using these properties, $L(s, f)$ exhibits an Euler product :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{p \in \text { primes }}\left(1-a(p) p^{-s}+\chi(p) p^{k-1} p^{-2 s}\right)^{-1} \tag{11}
\end{equation*}
$$

- Note the quadratic form in the denominator.
- The motivation of our work is to find a dual description of the q-expansion via p-adic wavelets, which we shall call p-artons, and associate the Euler factor of the corresponding L-function with the Mellin transform of the p-artons.
- The relation of the construction discussed, to the classical theory of Automorphic forms is not studied.
- Using these properties, $L(s, f)$ exhibits an Euler product :

$$
\begin{equation*}
L(s, f)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\prod_{p \in \text { primes }}\left(1-a(p) p^{-s}+\chi(p) p^{k-1} p^{-2 s}\right)^{-1} \tag{11}
\end{equation*}
$$

- Note the quadratic form in the denominator.
- The motivation of our work is to find a dual description of the q-expansion via p-adic wavelets, which we shall call p-artons, and associate the Euler factor of the corresponding L-function with the Mellin transform of the p-artons.
- The relation of the construction discussed, to the classical theory of Automorphic forms is not studied.

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

p-adic wavelets

- The analog of the Haar wavelets on R are the Kozyrev wavelets on \mathbb{Q}_{p} :

$$
\begin{align*}
& \psi_{n, m, j}^{(p)}(x)=p^{-\frac{n}{2}} \exp \left[\frac{2 \pi i}{p} j p^{n} x\right] \Omega_{p}\left(p^{n} x-m\right) \tag{12}\\
& \int_{\mathbb{Q}_{p}} \psi_{n, m, j}^{(p)}(x) \psi_{n^{\prime}, m^{\prime}, j^{\prime}}^{(p)}(x)=\delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{j j^{\prime}} \tag{13}
\end{align*}
$$

- where $n \in \mathbb{Z}, m \in \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $j=1,2, \ldots, p-1$ and
- The above can be obtained from the mother wavelets $\psi_{0,0, j}^{(p)}(x)$ by action of the affine group just like in the real case.

p-adic wavelets

- The analog of the Haar wavelets on R are the Kozyrev wavelets on \mathbb{Q}_{p} :

$$
\begin{align*}
& \psi_{n, m, j}^{(p)}(x)=p^{-\frac{n}{2}} \exp \left[\frac{2 \pi i}{p} j p^{n} x\right] \Omega_{p}\left(p^{n} x-m\right) \tag{12}\\
& \int_{\mathbb{Q}_{p}} \psi_{n, m, j}^{(p)}(x) \psi_{n^{\prime}, m^{\prime}, j^{\prime}}^{(p)}(x)=\delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{j j^{\prime}} \tag{13}
\end{align*}
$$

- where $n \in \mathbb{Z}, m \in \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $j=1,2, \ldots, p-1$ and

$$
\Omega_{p}\left(x, x_{0}\right)=\left\{\begin{array}{ll}
1 & \text { if }\left|x-x_{0}\right|_{p} \leq 1 \tag{14}\\
0 & \text { otherwise }
\end{array}, \quad x, x_{0} \in \mathbb{Q}_{p}\right.
$$

- The above can be obtained from the mother wavelets $\psi_{0,0, j}^{(p)}(x)$ by action of the affine group just like in the real case.

p-adic wavelets

- The analog of the Haar wavelets on R are the Kozyrev wavelets on \mathbb{Q}_{p} :

$$
\begin{align*}
& \psi_{n, m, j}^{(p)}(x)=p^{-\frac{n}{2}} \exp \left[\frac{2 \pi i}{p} j p^{n} x\right] \Omega_{p}\left(p^{n} x-m\right) \tag{12}\\
& \int_{\mathbb{Q}_{p}} \psi_{n, m, j}^{(p)}(x) \psi_{n^{\prime}, m^{\prime}, j^{\prime}}^{(p)}(x)=\delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{j j^{\prime}} \tag{13}
\end{align*}
$$

- where $n \in \mathbb{Z}, m \in \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $j=1,2, \ldots, p-1$ and

$$
\Omega_{p}\left(x, x_{0}\right)=\left\{\begin{array}{ll}
1 & \text { if }\left|x-x_{0}\right|_{p} \leq 1 \tag{14}\\
0 & \text { otherwise }
\end{array}, \quad x, x_{0} \in \mathbb{Q}_{p}\right.
$$

- The above can be obtained from the mother wavelets $\psi_{0,0, j}^{(p)}(x)$ by action of the affine group just like in the real case.
- These are eigenfunctions of the Vladimirov derivative, defined as:

$$
\begin{align*}
& D_{(p)}^{\alpha} f(x)=\frac{1}{\Gamma_{(p)}(-\alpha)} \int d x^{\prime} \frac{f\left(x^{\prime}\right)-f(x)}{\left|x-x^{\prime}\right|_{p}^{\alpha+1}} \tag{15}\\
& \Gamma_{(p)}(-\alpha)=\int_{\mathbb{Q}_{p}^{\times}} \frac{d x}{|x|_{p}} e^{2 \pi i x}|x|_{p}^{-\alpha} \tag{16}\\
& D_{(p)}^{\alpha} \psi_{n, m, j}^{(p)}(x)=p^{\alpha(1-n)} \psi_{n, m, j}^{(p)}(x) \tag{17}
\end{align*}
$$

- Our interest is only on the index n related to the scaling. We will use the ket-notation associated with the wavelet when ever possible:

$$
\psi_{n, 0,1}^{(p)}(x) \longleftrightarrow \quad|1-n\rangle_{(p)}
$$

- These are eigenfunctions of the Vladimirov derivative, defined as:

$$
\begin{align*}
& D_{(p)}^{\alpha} f(x)=\frac{1}{\Gamma_{(p)}(-\alpha)} \int d x^{\prime} \frac{f\left(x^{\prime}\right)-f(x)}{\left|x-x^{\prime}\right|_{p}^{\alpha+1}} \tag{15}\\
& \Gamma_{(p)}(-\alpha)=\int_{\mathbb{Q}_{p}^{\times}} \frac{d x}{|x|_{p}} e^{2 \pi i x}|x|_{p}^{-\alpha} \tag{16}\\
& D_{(p)}^{\alpha} \psi_{n, m, j}^{(p)}(x)=p^{\alpha(1-n)} \psi_{n, m, j}^{(p)}(x) \tag{17}
\end{align*}
$$

- Our interest is only on the index n related to the scaling. We will use the ket-notation associated with the wavelet when ever possible:

$$
\begin{equation*}
\psi_{n, 0,1}^{(p)}(x) \longleftrightarrow \quad|1-n\rangle_{(p)} \tag{18}
\end{equation*}
$$

- We can define raising and lowering operators $a_{ \pm}^{(p)}$ on the wavelets that changes the scaling quantum number by one:

$$
\begin{equation*}
a_{ \pm}^{(p)} \psi_{n, 0,1}^{(p)}(x)=\psi_{n \pm 1,0,1}^{(p)}(x) \longleftrightarrow a_{ \pm}^{(p)}|n\rangle_{(p)}=|n \mp 1\rangle_{(p)} \tag{19}
\end{equation*}
$$

- We restrict ourselves to the subspace spanned by set $\left\{\psi_{n 0,1}^{(p)}(x) \mid n=1,0,-1,-2, \cdots\right\}$, supported on $p^{-1} \mathbb{Z}_{n}$, which defines a subspace $\mathcal{H}_{-}^{(p)} \subset L^{2}\left(p^{-1} \mathbb{Z}_{p}\right)$.
- The wavelets supported on this subset, correspond to the eigen values $\left\{1, p, p^{2}, \ldots\right\}$ of the operator $D_{(p)}$
- When restricted to this subspace, we demand that the wavelet $\psi_{1,0,1}^{(p)}(x)$ is the ground state:
$a^{(p)}|0\rangle_{(p)}=0$
- We can define raising and lowering operators $a_{ \pm}^{(p)}$ on the wavelets that changes the scaling quantum number by one:

$$
\begin{equation*}
a_{ \pm}^{(p)} \psi_{n, 0,1}^{(p)}(x)=\psi_{n \pm 1,0,1}^{(p)}(x) \longleftrightarrow a_{ \pm}^{(p)}|n\rangle_{(p)}=|n \mp 1\rangle_{(p)} \tag{19}
\end{equation*}
$$

- We restrict ourselves to the subspace spanned by set $\left\{\psi_{n, 0,1}^{(p)}(x) \mid n=1,0,-1,-2, \cdots\right\}$, supported on $p^{-1} \mathbb{Z}_{p}$, which defines a subspace $\mathcal{H}_{-}^{(p)} \subset L^{2}\left(p^{-1} \mathbb{Z}_{p}\right)$.
- The wavelets supported on this subset, correspond to the eigen values $\left\{1, p, p^{2}, \ldots\right\}$ of the operator $D_{(p)}$
- When restricted to this subspace, we demand that the wavelet ${ }_{1,0,1}^{(p)}(x)$ is the ground state:
- We can define raising and lowering operators $a_{ \pm}^{(p)}$ on the wavelets that changes the scaling quantum number by one:

$$
\begin{equation*}
a_{ \pm}^{(p)} \psi_{n, 0,1}^{(p)}(x)=\psi_{n \pm 1,0,1}^{(p)}(x) \longleftrightarrow a_{ \pm}^{(p)}|n\rangle_{(p)}=|n \mp 1\rangle_{(p)} \tag{19}
\end{equation*}
$$

- We restrict ourselves to the subspace spanned by set $\left\{\psi_{n, 0,1}^{(p)}(x) \mid n=1,0,-1,-2, \cdots\right\}$, supported on $p^{-1} \mathbb{Z}_{p}$, which defines a subspace $\mathcal{H}_{-}^{(p)} \subset L^{2}\left(p^{-1} \mathbb{Z}_{p}\right)$.
- The wavelets supported on this subset, correspond to the eigen values $\left\{1, p, p^{2}, \ldots\right\}$ of the operator $D_{(p)}$
- When restricted to this subspace, we demand that the wavelet $\psi_{1,0,1}^{(p)}(x)$ is the ground state:
- We can define raising and lowering operators $a_{ \pm}^{(p)}$ on the wavelets that changes the scaling quantum number by one:

$$
\begin{equation*}
a_{ \pm}^{(p)} \psi_{n, 0,1}^{(p)}(x)=\psi_{n \pm 1,0,1}^{(p)}(x) \longleftrightarrow a_{ \pm}^{(p)}|n\rangle_{(p)}=|n \mp 1\rangle_{(p)} \tag{19}
\end{equation*}
$$

- We restrict ourselves to the subspace spanned by set $\left\{\psi_{n, 0,1}^{(p)}(x) \mid n=1,0,-1,-2, \cdots\right\}$, supported on $p^{-1} \mathbb{Z}_{p}$, which defines a subspace $\mathcal{H}_{-}^{(p)} \subset L^{2}\left(p^{-1} \mathbb{Z}_{p}\right)$.
- The wavelets supported on this subset, correspond to the eigen values $\left\{1, p, p^{2}, \ldots\right\}$ of the operator $D_{(p)}$
- When restricted to this subspace, we demand that the wavelet $\psi_{1,0,1}^{(p)}(x)$ is the ground state:

$$
\begin{equation*}
a_{+}^{(p)}|0\rangle_{(p)}=0 \tag{20}
\end{equation*}
$$

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Dual of the q-expansion

- We use the prime factorization of a natural number $n \in \mathbb{N}$ to relate it to a wavelet in $\otimes \mathcal{H}_{-}^{(p)} \subset \otimes_{p} \mathbb{Q}_{p}$:

$$
\begin{align*}
n & =\prod_{p} p^{n_{p}} \longmapsto \tag{21}\\
\bigotimes_{p}\left|n_{p}\right\rangle_{(p)} & =\left|n_{2}\right\rangle_{(2)} \otimes\left|n_{3}\right\rangle_{(3)} \otimes\left|n_{5}\right\rangle_{(5)} \otimes\left|n_{7}\right\rangle_{(7)} \otimes \cdots
\end{align*}
$$

- Here all but a finite number of n_{p} are zero.
- Next we associate with a cusp form a vector in $\otimes \mathcal{H}_{-}^{(p)}$:

Dual of the q-expansion

- We use the prime factorization of a natural number $n \in \mathbb{N}$ to relate it to a wavelet in $\otimes \mathcal{H}_{-}^{(p)} \subset \otimes_{p} \mathbb{Q}_{p}$:

$$
\begin{align*}
n & =\prod_{p} p^{n_{p}} \longmapsto \tag{21}\\
\bigotimes_{p}\left|n_{p}\right\rangle_{(p)} & =\left|n_{2}\right\rangle_{(2)} \otimes\left|n_{3}\right\rangle_{(3)} \otimes\left|n_{5}\right\rangle_{(5)} \otimes\left|n_{7}\right\rangle_{(7)} \otimes \cdots
\end{align*}
$$

- Here all but a finite number of n_{p} are zero.
- Next we associate with a cusp form a vector in $\otimes \mathcal{H}_{-}^{(p)}$.

Dual of the q-expansion

- We use the prime factorization of a natural number $n \in \mathbb{N}$ to relate it to a wavelet in $\otimes \mathcal{H}_{-}^{(p)} \subset \otimes_{p} \mathbb{Q}_{p}$:

$$
\begin{align*}
n & =\prod_{p} p^{n_{p}} \longmapsto \tag{21}\\
\bigotimes_{p}\left|n_{p}\right\rangle_{(p)} & =\left|n_{2}\right\rangle_{(2)} \otimes\left|n_{3}\right\rangle_{(3)} \otimes\left|n_{5}\right\rangle_{(5)} \otimes\left|n_{7}\right\rangle_{(7)} \otimes \cdots
\end{align*}
$$

- Here all but a finite number of n_{p} are zero.
- Next we associate with a cusp form a vector in $\otimes \mathcal{H}_{-}^{(p)}$:

$$
\begin{align*}
& f=\sum_{n=1}^{\infty} a(n) q^{n}=\sum_{n_{p}=0}^{\infty}\left(\prod_{p} a\left(p^{n_{p}}\right)\right) q^{\Pi p^{n_{p}}} \tag{22}\\
& \longmapsto|\mathfrak{j}\rangle=\sum_{n_{p}=0}^{\infty} \bigotimes_{p} a\left(p^{n_{p}}\right)\left|n_{p}\right\rangle_{(p)}
\end{align*}
$$

- Which can be simplified using the multiplicative property of the coefficients, and by action of the lowering operator on the ground state: $\left|n_{p}\right\rangle=a_{-}^{n_{p}}|0\rangle_{(p)}$

$$
\begin{align*}
& =\sum_{\substack{n_{2}, n_{3}, n_{5}, \cdots=0}}^{\infty} a\left(2^{n_{2}}\right)\left|n_{2}\right\rangle_{(2)} \otimes a\left(3^{n_{3}}\right)\left|n_{3}\right\rangle_{(3)} \otimes a\left(5^{n_{5}}\right)\left|n_{5}\right\rangle_{(5)} \otimes \cdots \\
& =\sum_{n_{p}=0}^{\infty} \bigotimes_{p} a\left(p^{n_{p}}\right) a_{-}^{n_{p}}|0\rangle_{(p)} \tag{23}
\end{align*}
$$

- Which can be rearranged to write

- Which can be simplified using the multiplicative property of the coefficients, and by action of the lowering operator on the ground state: $\left|n_{p}\right\rangle=a_{-}^{n_{p}}|0\rangle_{(p)}$

$$
\begin{align*}
& =\sum_{\substack{n_{2}, n_{3}, n_{5}, \cdots=0}}^{\infty} a\left(2^{n_{2}}\right)\left|n_{2}\right\rangle_{(2)} \otimes a\left(3^{n_{3}}\right)\left|n_{3}\right\rangle_{(3)} \otimes a\left(5^{n_{5}}\right)\left|n_{5}\right\rangle_{(5)} \otimes \cdots \\
& =\sum_{n_{p}=0}^{\infty} \bigotimes_{p} a\left(p^{n_{p}}\right) a_{-}^{n_{p}}|0\rangle_{(p)} \tag{23}
\end{align*}
$$

- Which can be rearranged to write :

$$
\begin{equation*}
\bigotimes\left(1-a(p) a_{-}+p^{k-1} \chi(p) a_{-}^{2}\right)^{-1}|0\rangle_{(p)} \equiv \bigotimes_{p}\left|\mathfrak{f}_{(p)}\right\rangle \tag{24}
\end{equation*}
$$

- Or to say that $|f\rangle$ is a tensor product of vectors in each of the p-th
- Which can be simplified using the multiplicative property of the coefficients, and by action of the lowering operator on the ground state: $\left|n_{p}\right\rangle=a_{-}^{n_{p}}|0\rangle_{(p)}$

$$
\begin{align*}
& =\sum_{\substack{n_{2}, n_{3}, n_{5}, \cdots=0}}^{\infty} a\left(2^{n_{2}}\right)\left|n_{2}\right\rangle_{(2)} \otimes a\left(3^{n_{3}}\right)\left|n_{3}\right\rangle_{(3)} \otimes a\left(5^{n_{5}}\right)\left|n_{5}\right\rangle_{(5)} \otimes \cdots \\
& =\sum_{n_{p}=0}^{\infty} \bigotimes_{p} a\left(p^{n_{p}}\right) a_{-}^{n_{p}}|0\rangle_{(p)} \tag{23}
\end{align*}
$$

- Which can be rearranged to write :

$$
\begin{equation*}
\bigotimes\left(1-a(p) a_{-}+p^{k-1} \chi(p) a_{-}^{2}\right)^{-1}|0\rangle_{(p)} \equiv \bigotimes_{p}\left|\mathfrak{f}_{(p)}\right\rangle \tag{24}
\end{equation*}
$$

- Or to say that $|f\rangle$ is a tensor product of vectors in each of the p-th sector.
- We consider the vector $\left|\mathfrak{f}_{(p)}\right\rangle \in \mathcal{H}_{-}^{(p)}$ as the p-th p-arton, i.e. 'part' of the cusp form f at the prime p.
- The operator acting on the ground state resembles the form of the Euler factor for prime p of the L - function associated with f.
- Explicitly, for each $\left|f_{(p)}\right\rangle$ we have a $f_{(p)}\left(x_{(p)}\right)$ supported on $p^{-1} \mathbb{Z}_{p}$

$$
\begin{equation*}
f_{(p)}\left(x_{(p)}\right)=\sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) \psi_{1-n_{p}, 0,1}^{(p)}\left(x_{(p)}\right) \tag{25}
\end{equation*}
$$

- In summary, according to this correspondence, a cusp form $f: \mathbb{H} \rightarrow \mathbb{C}$ is equivalent to the infinite set of functions $f_{(p)}: \mathbb{Q}_{p} \rightarrow \mathbb{C}$, one function for each prime p. The two are equivalent in the sense that from f we can get $\left(f_{(2)}, f_{(3)}, f_{(5)}\right.$, and vice versa.
- We consider the vector $\left|\mathfrak{f}_{(p)}\right\rangle \in \mathcal{H}_{-}^{(p)}$ as the p-th p-arton, i.e. 'part' of the cusp form f at the prime p.
- The operator acting on the ground state resembles the form of the Euler factor for prime p of the L - function associated with f.
- Explicitly, for each $\left|f_{(p)}\right\rangle$ we have a $f_{(p)}\left(x_{(p)}\right)$ supported on $p^{-1} \mathbb{Z}_{p}$

- In summary, according to this correspondence, a cusp form $f: \mathbb{H} \rightarrow \mathbb{C}$ is equivalent to the infinite set of functions $f_{(p)}: \mathbb{Q}_{p} \rightarrow \mathbb{C}$, one function for each prime p. The two are equivalent in the sense that from f we can get $\left(f_{(2)}, f_{(3)}, f_{(5)}\right.$, and vice versa.
- We consider the vector $\left|\mathfrak{f}_{(p)}\right\rangle \in \mathcal{H}_{-}^{(p)}$ as the p-th p-arton, i.e. 'part' of the cusp form f at the prime p.
- The operator acting on the ground state resembles the form of the Euler factor for prime p of the L - function associated with f.
- Explicitly, for each $\left|\mathfrak{f}_{(p)}\right\rangle$ we have a $f_{(p)}\left(x_{(p)}\right)$ supported on $p^{-1} \mathbb{Z}_{p}$:

$$
\begin{equation*}
f_{(p)}\left(x_{(p)}\right)=\sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) \psi_{1-n_{p}, 0,1}^{(p)}\left(x_{(p)}\right) \tag{25}
\end{equation*}
$$

- In summary, according to this correspondence, a cusp form $f: \mathbb{H} \rightarrow \mathbb{C}$ is equivalent to the infinite set of functions $f_{(p)}: \mathbb{Q}_{p} \rightarrow \mathbb{C}$, one function for each prime p. The two are equivalent in the sense that from f we can get $\left(f_{(2)}, f_{(3)}, f_{(5)}\right.$, and vice versa.
- We consider the vector $\left|\mathfrak{f}_{(p)}\right\rangle \in \mathcal{H}_{-}^{(p)}$ as the p-th p-arton, i.e. 'part' of the cusp form f at the prime p.
- The operator acting on the ground state resembles the form of the Euler factor for prime p of the L - function associated with f.
- Explicitly, for each $\left|f_{(p)}\right\rangle$ we have a $f_{(p)}\left(x_{(p)}\right)$ supported on $p^{-1} \mathbb{Z}_{p}$:

$$
\begin{equation*}
f_{(p)}\left(x_{(p)}\right)=\sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) \psi_{1-n_{p}, 0,1}^{(p)}\left(x_{(p)}\right) \tag{25}
\end{equation*}
$$

- In summary, according to this correspondence, a cusp form $f: \mathbb{H} \rightarrow \mathbb{C}$ is equivalent to the infinite set of functions $f_{(p)}: \mathbb{Q}_{p} \rightarrow \mathbb{C}$, one function for each prime p. The two are equivalent in the sense that from f we can get $\left(f_{(2)}, f_{(3)}, f_{(5)}, \cdots\right)$ and vice versa.

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Melin transform of the p-arton

- Consider the Mellin transform defined using the unitary character $\omega_{\ell}=e^{\frac{2 \pi i \ell}{\rho} x|x|_{\rho}}$ which determines a phase depending on the leading p-adic 'digit' of x :

$$
\begin{align*}
\tilde{g}_{\omega}(s) & \equiv \mathcal{M}_{(p, \omega)}[g](s)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x e^{\frac{2 \pi i \ell}{p} x|x|_{p}}|x|_{p}^{s} g(x), \\
s & \in \mathbb{C} \text { and } \ell=0,1, \cdots, p-1 \tag{26}
\end{align*}
$$

- Using the above the Mellin transform of the Kozyrev wavelet $\psi_{n, 0,1}(x)$ can be evaluated
- Thus the Mellin transform of the p-arton yields:

Melin transform of the p-arton

- Consider the Mellin transform defined using the unitary character $\omega_{\ell}=e^{\frac{2 \pi i \ell}{\rho} x|x|_{\rho}}$ which determines a phase depending on the leading p-adic 'digit' of x :

$$
\begin{align*}
\tilde{g}_{\omega}(s) & \equiv \mathcal{M}_{(p, \omega)}[g](s)=\int_{\mathbb{Q}_{\rho}^{\times}} d^{\times} X e^{\frac{2 \pi i \ell}{\rho} x|x| \rho}|X|_{p}^{s} g(x), \\
s & \in \mathbb{C} \text { and } \ell=0,1, \cdots, p-1 \tag{26}
\end{align*}
$$

- Using the above the Mellin transform of the Kozyrev wavelet $\psi_{n, 0,1}(x)$ can be evaluated:

$$
\begin{equation*}
\mathcal{M}_{(p, \omega)}\left[\psi_{n, 1,0}\right](s)=-\left(\frac{1}{p\left(1-p^{-s}\right)}-\frac{1}{p^{s}-1} \delta_{l, 0}-\delta_{l, p-1}\right) p^{n\left(s-\frac{1}{2}\right)} \tag{27}
\end{equation*}
$$

- Thus the Mellin transform of the p-arton yields:

Melin transform of the p-arton

- Consider the Mellin transform defined using the unitary character $\omega_{\ell}=e^{\frac{2 \pi i \ell}{\rho} x|x| \rho}$ which determines a phase depending on the leading p-adic 'digit' of x :

$$
\begin{align*}
\tilde{g}_{\omega}(s) & \equiv \mathcal{M}_{(p, \omega)}[g](s)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x e^{\frac{2 \pi i \ell}{p} x|x|_{p}}|x|_{p}^{s} g(x), \\
s & \in \mathbb{C} \text { and } \ell=0,1, \cdots, p-1 \tag{26}
\end{align*}
$$

- Using the above the Mellin transform of the Kozyrev wavelet $\psi_{n, 0,1}(x)$ can be evaluated:

$$
\begin{equation*}
\mathcal{M}_{(p, \omega)}\left[\psi_{n, 1,0}\right](s)=-\left(\frac{1}{p\left(1-p^{-s}\right)}-\frac{1}{p^{s}-1} \delta_{l, 0}-\delta_{l, p-1}\right) p^{n\left(s-\frac{1}{2}\right)} \tag{27}
\end{equation*}
$$

- Thus the Mellin transform of the p-arton yields:

$$
\begin{equation*}
\mathcal{M}_{(p, \omega)}\left[\mathfrak{f}_{(p)}\left(x_{(p)}\right)\right](s)=c_{p}(\ell, s) \sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) p^{\left(1-n_{p}\right)\left(s-\frac{1}{2}\right)} \tag{28}
\end{equation*}
$$

- We can combine the results for all the primes, the Mellin transform of the full wavefunction associated with the modular form is then (plugging in same argument for all the primes):

$$
\begin{align*}
& \mathcal{M}_{(p, \omega)}\left[\left\langle\left(\xi_{(2)}, \xi_{(3)}, \xi_{(5)}, \cdots\right) \mid \mathfrak{f}\right\rangle\right](s) \\
& =\prod_{p} \mathcal{M}_{(p, \omega)}\left[\mathfrak{f}_{(p)}\left(\xi_{(p)}\right)\right](s) \\
& =\prod_{p} c_{p}(\ell, s) \sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) p^{\left(1-n_{p}\right)\left(s-\frac{1}{2}\right)} \\
& =\left(\prod_{p} c_{p}(\ell, s) p^{s-\frac{1}{2}}\right) L\left(s-\frac{1}{2}, f\right) \tag{29}
\end{align*}
$$

- Although the infinite product in the prefactor depends on ℓ, which is different for different prime, this is reminiscent of the Mellin transform of the modular form to start with.
- We can combine the results for all the primes, the Mellin transform of the full wavefunction associated with the modular form is then (plugging in same argument for all the primes):

$$
\begin{align*}
& \mathcal{M}_{(p, \omega)}\left[\left\langle\left(\xi_{(2)}, \xi_{(3)}, \xi_{(5)}, \cdots\right) \mid \mathfrak{f}\right\rangle\right](s) \\
& =\prod_{p} \mathcal{M}_{(p, \omega)}\left[\mathfrak{f}_{(p)}\left(\xi_{(p)}\right)\right](s) \\
& =\prod_{p} c_{p}(\ell, s) \sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) p^{\left(1-n_{p}\right)\left(s-\frac{1}{2}\right)} \\
& =\left(\prod_{p} c_{p}(\ell, s) p^{s-\frac{1}{2}}\right) L\left(s-\frac{1}{2}, f\right) \tag{29}
\end{align*}
$$

- Although the infinite product in the prefactor depends on ℓ, which is different for different prime, this is reminiscent of the Mellin transform of the modular form to start with.

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Hecke operators

- Next our goal would be to have some operational understanding of the Hecke operators over these vectors.
- Recall the Hecke operators $T(m), m \in \mathbb{N}$, are a set of commuting operators with action on an eigen cusp-form

$$
T(m) f^{\prime}(z)=a^{\prime}(m) f^{\prime}(z)
$$

- They satisfy the following algebraic identities

$$
\begin{gathered}
T(m) T(n)=T(m n) \text { for } m^{\prime}+n \\
T(p) T\left(p^{l}\right)=T\left(p^{l+1}\right)+\chi(p) p^{k-1} T\left(p^{l-1}\right)
\end{gathered}
$$

- On the q expansion, the action of $T(p)$ can be written using two operators:

Hecke operators

- Next our goal would be to have some operational understanding of the Hecke operators over these vectors.
- Recall the Hecke operators $T(m), m \in \mathbb{N}$, are a set of commuting operators with action on an eigen cusp-form :

$$
\begin{equation*}
T(m) f(z)=a(m) f(z) \tag{30}
\end{equation*}
$$

- They satisfy the following algebraic identities

- On the q expansion, the action of $T(p)$ can be written using two operators:

Hecke operators

- Next our goal would be to have some operational understanding of the Hecke operators over these vectors.
- Recall the Hecke operators $T(m), m \in \mathbb{N}$, are a set of commuting operators with action on an eigen cusp-form :

$$
\begin{equation*}
T(m) f(z)=a(m) f(z) \tag{30}
\end{equation*}
$$

- They satisfy the following algebraic identities:

$$
\begin{gather*}
T(m) T(n)=T(m n) \text { for } m \nmid n \tag{31}\\
T(p) T\left(p^{\ell}\right)=T\left(p^{\ell+1}\right)+\chi(p) p^{k-1} T\left(p^{\ell-1}\right) \tag{32}
\end{gather*}
$$

- On the q expansion, the action of $T(p)$ can be written using two operators:

Hecke operators

- Next our goal would be to have some operational understanding of the Hecke operators over these vectors.
- Recall the Hecke operators $T(m), m \in \mathbb{N}$, are a set of commuting operators with action on an eigen cusp-form :

$$
\begin{equation*}
T(m) f(z)=a(m) f(z) \tag{30}
\end{equation*}
$$

- They satisfy the following algebraic identities:

$$
\begin{gather*}
T(m) T(n)=T(m n) \text { for } m \nmid n \tag{31}\\
T(p) T\left(p^{\ell}\right)=T\left(p^{\ell+1}\right)+\chi(p) p^{k-1} T\left(p^{\ell-1}\right) \tag{32}
\end{gather*}
$$

- On the q expansion, the action of $T(p)$ can be written using two operators:
- $V(m)$ gives a new series by replacing each q^{n} in f by $q^{n m}$.

$$
\begin{equation*}
(V(m) f)(z)=\sum_{n=1}^{\infty} a(n) q^{m n}=\sum_{n=1}^{\infty} a(n) e^{2 \pi i m n z}=f(m z) \tag{33}
\end{equation*}
$$

- $U(m)$ which gives a new series by replacing q^{n} by $q^{\frac{n}{m}}$ for n divisible by m

- Hence a Hecke operator for a prime argument can be given as :
- $V(m)$ gives a new series by replacing each q^{n} in f by $q^{n m}$.

$$
\begin{equation*}
(V(m) f)(z)=\sum_{n=1}^{\infty} a(n) q^{m n}=\sum_{n=1}^{\infty} a(n) e^{2 \pi i m n z}=f(m z) \tag{33}
\end{equation*}
$$

- $U(m)$ which gives a new series by replacing q^{n} by $q^{\frac{n}{m}}$ for n divisible by m :

$$
\begin{equation*}
(U(m) f)(z)=\sum_{\substack{n=1 \\(m(n)}}^{\infty} a(n) q^{\frac{n}{m}}=\frac{1}{m} \sum_{j=0}^{m-1} f\left(\frac{z+j}{m}\right) \tag{34}
\end{equation*}
$$

- Hence a Hecke operator for a prime argument can be given as
- $V(m)$ gives a new series by replacing each q^{n} in f by $q^{n m}$.

$$
\begin{equation*}
(V(m) f)(z)=\sum_{n=1}^{\infty} a(n) q^{m n}=\sum_{n=1}^{\infty} a(n) e^{2 \pi i m n z}=f(m z) \tag{33}
\end{equation*}
$$

- $U(m)$ which gives a new series by replacing q^{n} by $q^{\frac{n}{m}}$ for n divisible by m :

$$
\begin{equation*}
(U(m) f)(z)=\sum_{\substack{n=1 \\(m \mid n)}}^{\infty} a(n) q^{\frac{n}{m}}=\frac{1}{m} \sum_{j=0}^{m-1} f\left(\frac{z+j}{m}\right) \tag{34}
\end{equation*}
$$

- Hence a Hecke operator for a prime argument can be given as :

$$
\begin{equation*}
T(p)=U(p)+\chi(p) p^{k-1} V(p) \tag{35}
\end{equation*}
$$

- The actions of U and V remind us of the raising and lowering operators on the wavelets, $U \sim a_{+}$and $V \sim a_{-}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a\left(p^{n}\right)|n\rangle \xrightarrow{a_{-}} \sum_{n=0}^{\infty} a\left(p^{n}\right)|n+1\rangle=\sum_{n=1}^{\infty} a\left(p^{n-1}\right)|n\rangle \\
& \begin{aligned}
\sum_{n=0}^{\infty} a\left(p^{n}\right)|n\rangle \xrightarrow{a_{+}} & \sum_{n=1}^{\infty} a\left(p^{n}\right)|n-1\rangle= \\
& =a(p) \sum_{n=0}^{\infty} a\left(p^{n+1}\right)|n\rangle \\
& a\left(p^{n}\right)|n\rangle-\chi(p) p^{k-1} \sum_{n=1}^{\infty} a\left(p^{n-1}\right)|n\rangle
\end{aligned}
\end{aligned}
$$

- Thus we can define the following Hecke operator for a prime argument

$$
T(p)=a_{+}+\chi(p) p^{k-1} a_{-}
$$

- The actions of U and V remind us of the raising and lowering operators on the wavelets, $U \sim a_{+}$and $V \sim a_{-}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a\left(p^{n}\right)|n\rangle \xrightarrow{a_{-}} \sum_{n=0}^{\infty} a\left(p^{n}\right)|n+1\rangle=\sum_{n=1}^{\infty} a\left(p^{n-1}\right)|n\rangle \\
& \sum_{n=0}^{\infty} a\left(p^{n}\right)|n\rangle \xrightarrow{a_{+}} \sum_{n=1}^{\infty} a\left(p^{n}\right)|n-1\rangle=\sum_{n=0}^{\infty} a\left(p^{n+1}\right)|n\rangle \\
& =a(p) \sum_{n=0}^{\infty} a\left(p^{n}\right)|n\rangle-\chi(p) p^{k-1} \sum_{n=1}^{\infty} a\left(p^{n-1}\right)|n\rangle
\end{aligned}
$$

- Thus we can define the following Hecke operator for a prime argument :

$$
\begin{equation*}
T(p)=a_{+}+\chi(p) p^{k-1} a_{-} \tag{36}
\end{equation*}
$$

- This gives the action of $T(p)$:

$$
\begin{equation*}
T(p)\left|\mathfrak{f}_{(p)}\right\rangle=a(p)\left|\mathfrak{f}_{(p)}\right\rangle \tag{37}
\end{equation*}
$$

- Unfortunately the self adjointness of $\chi^{* \frac{1}{2}}(p) T(p)$ is not straight forward under a suitably chosen inner product.
- It is found to be more convenient to use set of wavelets which are orthogonal under multiplicative invariant measure :

$$
\begin{align*}
& \psi_{n, m, j}^{(p)}(x)=|x|_{p}^{\frac{1}{2}} \psi_{n, m, j}^{(p)}(x) \tag{38}\\
& \int_{Q_{p}^{x}} \frac{d x}{|x|_{p}} \psi_{n, 0,1}^{(p)}(x) \psi_{n^{p}, 0,1}^{(p)}(x)=\int_{Q_{p}} d x \psi_{n, 0,1}^{(p)}(x) \psi_{n^{\prime}, 0,1}^{(p)}(x)=\delta_{n n^{\prime}}
\end{align*}
$$

- Using these we define a slightly modified p-arton :

$$
\begin{equation*}
f_{(p)}\left(x_{(p)}\right)=\sum_{n_{p}=0}^{\infty} p^{-\frac{k-1}{2} n_{p}} a\left(p^{n_{p}}\right) \psi_{1-n_{p}, 0,1}^{(p)}\left(x_{(p)}\right) \tag{39}
\end{equation*}
$$

- This gives the action of $T(p)$:

$$
\begin{equation*}
T(p)\left|\mathfrak{f}_{(p)}\right\rangle=a(p)\left|\mathfrak{f}_{(p)}\right\rangle \tag{37}
\end{equation*}
$$

- Unfortunately the self adjointness of $\chi^{* \frac{1}{2}}(p) T(p)$ is not straight forward under a suitably chosen inner product.
- It is found to be more convenient to use set of wavelets which are orthogonal under multiplicative invariant measure

- Using these we define a slightly modified p-arton

- This gives the action of $T(p)$:

$$
\begin{equation*}
T(p)\left|\mathfrak{f}_{(p)}\right\rangle=a(p)\left|\mathfrak{f}_{(p)}\right\rangle \tag{37}
\end{equation*}
$$

- Unfortunately the self adjointness of $\chi^{* \frac{1}{2}}(p) T(p)$ is not straight forward under a suitably chosen inner product.
- It is found to be more convenient to use set of wavelets which are orthogonal under multiplicative invariant measure :

$$
\begin{align*}
& \Psi_{n, m, j}^{(p)}(x)=|x|_{p}^{\frac{1}{2}} \psi_{n, m, j}^{(p)}(x) \tag{38}\\
& \int_{\mathbb{Q}_{p}^{\times}} \frac{d x}{|x|_{p}} \Psi_{n, 0,1}^{(p)}(x) \Psi_{n^{\prime}, 0,1}^{(p)}(x)=\int_{\mathbb{Q}_{p}} d x \psi_{n, 0,1}^{(p)}(x) \psi_{n^{\prime}, 0,1}^{(p)}(x)=\delta_{n n^{\prime}}
\end{align*}
$$

- Using these we define a slightly modified p-arton

- This gives the action of $T(p)$:

$$
\begin{equation*}
T(p)\left|\mathfrak{f}_{(p)}\right\rangle=a(p)\left|\mathfrak{f}_{(p)}\right\rangle \tag{37}
\end{equation*}
$$

- Unfortunately the self adjointness of $\chi^{* \frac{1}{2}}(p) T(p)$ is not straight forward under a suitably chosen inner product.
- It is found to be more convenient to use set of wavelets which are orthogonal under multiplicative invariant measure :

$$
\begin{aligned}
& \Psi_{n, m, j}^{(p)}(x)=|x|_{p}^{\frac{1}{2}} \psi_{n, m, j}^{(p)}(x) \\
& \int_{\mathbb{Q}_{p}^{x}} \frac{d x}{|x|_{p}} \Psi_{n, 0,1}^{(p)}(x) \Psi_{n^{\prime}, 0,1}^{(p)}(x)=\int_{\mathbb{Q}_{p}} d x \psi_{n, 0,1}^{(p)}(x) \psi_{n^{\prime}, 0,1}^{(p)}(x)=\delta_{n n^{\prime}}
\end{aligned}
$$

- Using these we define a slightly modified p-arton :

$$
\begin{equation*}
\mathbf{f}_{(p)}\left(x_{(p)}\right)=\sum_{n_{p}=0}^{\infty} p^{-\frac{k-1}{2} n_{p}} a\left(p^{n_{p}}\right) \Psi_{1-n_{p}, 0,1}^{(p)}\left(x_{(p)}\right) \tag{39}
\end{equation*}
$$

- Define the inner product of two functions with respect to the scale invariant measure $d^{\times} x$ on \mathbb{Q}_{p}^{\times}:

$$
\begin{equation*}
\left(\mathbf{f}_{(p)} \mid \mathbf{g}_{(p)}\right)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}(x) \mathbf{g}_{(p)}(x) \tag{40}
\end{equation*}
$$

- Define the raising and lowering operators

- From which one can check $\mathbf{a}_{+}^{\dagger}=\mathbf{a}_{\mp}$. Then one can show

and $\quad \mathrm{T}^{\dagger}(p)=\chi^{*}(p) \mathrm{T}(p)$
- Define the inner product of two functions with respect to the scale invariant measure $d^{\times} x$ on \mathbb{Q}_{p}^{\times}:

$$
\begin{equation*}
\left(\mathbf{f}_{(p)} \mid \mathbf{g}_{(p)}\right)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}(x) \mathbf{g}_{(p)}(x) \tag{40}
\end{equation*}
$$

- Define the raising and lowering operators:

$$
\begin{align*}
& \mathbf{a}_{+} \mathbf{f}_{(p)}(x)=\sum_{n_{p}=1}^{\infty} \int_{\mathbb{Q}_{p}^{\times}} d^{\times} y \Psi_{2-n_{p}, 0,1}^{(p)}(x) \Psi_{1-n_{p}, 0,1}^{(p) *}(y) \mathbf{f}_{(p)}(y) \\
& \mathbf{a}_{-} \mathbf{f}_{(p)}(x)=\sum_{n_{p}=0}^{\infty} \int_{\mathbb{Q}_{p}^{\times}} d^{\times} y \Psi_{-n_{p}, 0,1}^{(p)}(x) \psi_{1-n_{p}, 0,1}^{(p) *}(y) \mathbf{f}_{(p)}(y) \tag{41}
\end{align*}
$$

- From which one can check $\mathbf{a}_{ \pm}^{\dagger}=\mathbf{a}_{\mp}$. Then one can show

and $\quad \mathrm{T}^{\dagger}(p)=\chi^{*}(p) \boldsymbol{T}(p)$
- Define the inner product of two functions with respect to the scale invariant measure $d^{\times} x$ on \mathbb{Q}_{p}^{\times}:

$$
\begin{equation*}
\left(\mathbf{f}_{(p)} \mid \mathbf{g}_{(p)}\right)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}(x) \mathbf{g}_{(p)}(x) \tag{40}
\end{equation*}
$$

- Define the raising and lowering operators:

$$
\begin{align*}
& \mathbf{a}_{+} \mathbf{f}_{(p)}(x)=\sum_{n_{p}=1}^{\infty} \int_{\mathbb{Q}_{p}^{\times}} d^{\times} y \Psi_{2-n_{p}, 0,1}^{(p)}(x) \Psi_{1-n_{p}, 0,1}^{(p) *}(y) \mathbf{f}_{(p)}(y) \\
& \mathbf{a}_{-} \mathbf{f}_{(p)}(x)=\sum_{n_{p}=0}^{\infty} \int_{\mathbb{Q}_{p}^{\times}} d^{\times} y \psi_{-n_{p}, 0,1}^{(p)}(x) \psi_{1-n_{p}, 0,1}^{(p) *}(y) \mathbf{f}_{(p)}(y) \tag{41}
\end{align*}
$$

- From which one can check $\mathbf{a}_{ \pm}^{\dagger}=\mathbf{a}_{\mp}$. Then one can show :

$$
\begin{align*}
& \mathbf{T}(p) \mathbf{f}_{(p)} \equiv\left(\mathbf{a}_{+}^{(p)}+\chi(p) \mathbf{a}_{-}^{(p)}\right) \mathbf{f}_{(p)}=p^{-\frac{k-1}{2}} a(p) \mathbf{f}_{(p)} \\
& \quad \text { and } \quad \mathbf{T}^{\dagger}(p)=\chi^{*}(p) \mathbf{T}(p) \tag{42}
\end{align*}
$$

- This implies orthogonality for two eigen functions \mathbf{f} and \mathbf{g} of $\mathbf{T}(p)$:

$$
\begin{equation*}
p^{-\frac{k-1}{2}}\left(a_{\mathfrak{f}}(p)-\chi(p) a_{\mathbf{g}}^{*}(p)\right) \int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{g}_{(p)}^{*}(x) \mathbf{f}_{(p)}(x)=0 \tag{43}
\end{equation*}
$$

- This also means $\chi^{* \frac{1}{2}}(p) a_{f}(p)$ are real.
- From the inner product, the Parseval indentity can be deduced in terms of the Euler factor of the L function, via the Mellin transform:

- Which after evaluation yields: $\sum_{n_{p}} p^{-(k-1) n_{p}} a_{\mathrm{f}}^{*}\left(p^{n_{p}}\right) a_{\mathrm{g}}\left(p^{n_{p}}\right)$
- This implies orthogonality for two eigen functions \mathbf{f} and \mathbf{g} of $\mathbf{T}(p)$:

$$
\begin{equation*}
p^{-\frac{\kappa-1}{2}}\left(a_{\mathfrak{f}}(p)-\chi(p) a_{\mathbf{g}}^{*}(p)\right) \int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{g}_{(p)}^{*}(x) \mathbf{f}_{(p)}(x)=0 \tag{43}
\end{equation*}
$$

- This also means $\chi^{* \frac{1}{2}}(p) a_{\mathrm{f}}(p)$ are real.
- From the inner product, the Parseval indentity can be deduced in terms of the Euler factor of the L function, via the Mellin transform:

- Which after evaluation yields: $\sum_{n_{p}} p^{-(k-1) n_{p}} a_{\mathrm{f}}^{*}\left(p^{n_{p}}\right) a_{\mathrm{g}}\left(p^{n_{p}}\right)$
- This implies orthogonality for two eigen functions \mathbf{f} and \mathbf{g} of $\mathbf{T}(p)$:

$$
\begin{equation*}
p^{-\frac{\kappa-1}{2}}\left(a_{\mathbf{f}}(p)-\chi(p) a_{\mathbf{g}}^{*}(p)\right) \int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{g}_{(p)}^{*}(x) \mathbf{f}_{(p)}(x)=0 \tag{43}
\end{equation*}
$$

- This also means $\chi^{* \frac{1}{2}}(p) a_{\mathrm{f}}(p)$ are real.
- From the inner product, the Parseval indentity can be deduced in terms of the Euler factor of the L function, via the Mellin transform:

$$
\begin{align*}
& \left(\mathbf{f}_{(p)} \mid \mathbf{g}_{(p)}\right) \tag{44}\\
& =\frac{\ln p}{2 \pi} \int_{0}^{\frac{2 \pi}{\ln }} d t\left(L_{f(p)}\left(\frac{k-1}{2}+i t\right)\right)^{*}\left(L_{\mathbf{g}(p)}\left(\frac{k-1}{2}+i t\right)\right)
\end{align*}
$$

- Which after evaluation yields: $\sum_{n_{p}} p^{-(k-1) n_{p}} a_{\mathrm{f}}^{*}\left(p^{n_{p}}\right) a_{\mathrm{g}}\left(p^{n_{p}}\right)$
- This implies orthogonality for two eigen functions \mathbf{f} and \mathbf{g} of $\mathbf{T}(p)$:

$$
\begin{equation*}
p^{-\frac{\kappa-1}{2}}\left(a_{\mathbf{f}}(p)-\chi(p) a_{\mathbf{g}}^{*}(p)\right) \int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{g}_{(p)}^{*}(x) \mathbf{f}_{(p)}(x)=0 \tag{43}
\end{equation*}
$$

- This also means $\chi^{* \frac{1}{2}}(p) a_{\mathrm{f}}(p)$ are real.
- From the inner product, the Parseval indentity can be deduced in terms of the Euler factor of the L function, via the Mellin transform:

$$
\begin{align*}
& \left(\mathbf{f}_{(p)} \mid \mathbf{g}_{(p)}\right) \tag{44}\\
& =\frac{\ln p}{2 \pi} \int_{0}^{\frac{2 \pi}{\ln p}} d t\left(L_{\mathbf{f}(p)}\left(\frac{k-1}{2}+i t\right)\right)^{*}\left(L_{\mathbf{g}(p)}\left(\frac{k-1}{2}+i t\right)\right)
\end{align*}
$$

- Which after evaluation yields: $\sum_{n_{p}} p^{-(k-1) n_{p}} a_{\mathbf{f}}^{*}\left(p^{n_{p}}\right) a_{\mathbf{g}}\left(p^{n_{\rho}}\right)$
- From the roots $a_{1}(p)=p^{(k-1) / 2} e^{i \alpha_{1}(p)}$ and $a_{2}(p)=p^{(k-1) / 2} e^{-i \alpha_{2}(p)}$ of the quadratic in the denominator of the local function $L_{p}(s, f)$, one can deduce :

$$
\begin{align*}
& a(p)=2 \cos \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right) p^{\frac{k-1}{2}} e^{\frac{i}{2}\left(\alpha_{1}-\alpha_{2}\right)} \\
& \chi(p)=e^{i\left(\alpha_{1}(p)-\alpha_{2}(p)\right)} \tag{45}
\end{align*}
$$

- Which is consistent with the condition on the growth of the coefficients $a(p)$
- The function $L_{p}(s, f)$ is the generating function of the orthogonal Chebyshev polynomial of type II, denoted by $U_{n}(x)$, with

- From the roots $a_{1}(p)=p^{(k-1) / 2} e^{i \alpha_{1}(p)}$ and $a_{2}(p)=p^{(k-1) / 2} e^{-i \alpha_{2}(p)}$ of the quadratic in the denominator of the local function $L_{p}(s, f)$, one can deduce :

$$
\begin{align*}
& a(p)=2 \cos \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right) p^{\frac{k-1}{2}} e^{\frac{i}{2}\left(\alpha_{1}-\alpha_{2}\right)} \\
& \chi(p)=e^{i\left(\alpha_{1}(p)-\alpha_{2}(p)\right)} \tag{45}
\end{align*}
$$

- Which is consistent with the condition on the growth of the coefficients $a(p)$.
- The function $L_{p}(S, f)$ is the generating function of the orthogonal Chebyshev polynomial of type II, denoted by $U_{n}(x)$, with

- From the roots $a_{1}(p)=p^{(k-1) / 2} e^{i \alpha_{1}(p)}$ and $a_{2}(p)=p^{(k-1) / 2} e^{-i \alpha_{2}(p)}$ of the quadratic in the denominator of the local function $L_{p}(s, f)$, one can deduce :

$$
\begin{align*}
& a(p)=2 \cos \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right) p^{\frac{k-1}{2}} e^{\frac{i}{2}\left(\alpha_{1}-\alpha_{2}\right)} \\
& \chi(p)=e^{i\left(\alpha_{1}(p)-\alpha_{2}(p)\right)} \tag{45}
\end{align*}
$$

- Which is consistent with the condition on the growth of the coefficients $a(p)$.
- The function $L_{p}(s, f)$ is the generating function of the orthogonal Chebyshev polynomial of type II, denoted by $U_{n}(x)$, with $\theta=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)$ and $t=p^{\frac{k-1}{2}-s} e^{\frac{i}{2}\left(\alpha_{1}-\alpha_{2}\right)}$.

$$
\begin{align*}
& \frac{1}{1-2 t \cos \theta+t^{2}}=\sum_{n=0}^{\infty} U_{n}(\cos \theta) t^{n} \tag{46}\\
& U_{n+1}(\xi)=2 \zeta U_{n}(\xi)-U_{n-1}(\xi), \quad U_{0}(\xi)=1 \text { and } U_{1}(\xi)=2 \xi
\end{align*}
$$

- The orthogonality of the p-artons \mathbf{f}, \mathbf{g} or the corresponding L_{p} functions becomes a consequence of the expression of identity :

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(\cos \phi) U_{n}\left(\cos \phi^{\prime}\right) \propto \delta\left(\phi-\phi^{\prime}\right) \tag{47}
\end{equation*}
$$

- This explicitly proves the orthogonality of the p-artons which are eigen functions of the Hecke operator defined.
- The appearance of the Chebyshev polynomials of type II in similar context, have been noticed by Conrey et.al and Serre.
- Next, we intend to study a class of functions for which these properties will be manifest by construction.
- The orthogonality of the p-artons \mathbf{f}, \mathbf{g} or the corresponding L_{p} functions becomes a consequence of the expression of identity :

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(\cos \phi) U_{n}\left(\cos \phi^{\prime}\right) \propto \delta\left(\phi-\phi^{\prime}\right) \tag{47}
\end{equation*}
$$

- This explicitly proves the orthogonality of the p-artons which are eigen functions of the Hecke operator defined.
- The appearance of the Chebyshev polynomials of type II in similar context, have been noticed by Conrey et.al and Serre.
- Next, we intend to study a class of functions for which these properties will be manifest by construction.
- The orthogonality of the p-artons \mathbf{f}, \mathbf{g} or the corresponding L_{p} functions becomes a consequence of the expression of identity :

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(\cos \phi) U_{n}\left(\cos \phi^{\prime}\right) \propto \delta\left(\phi-\phi^{\prime}\right) \tag{47}
\end{equation*}
$$

- This explicitly proves the orthogonality of the p-artons which are eigen functions of the Hecke operator defined.
- The appearance of the Chebyshev polynomials of type II in similar context, have been noticed by Conrey et.al and Serre.
- Next, we intend to study a class of functions for which these properties will be manifest by construction.
- The orthogonality of the p-artons \mathbf{f}, \mathbf{g} or the corresponding L_{p} functions becomes a consequence of the expression of identity :

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(\cos \phi) U_{n}\left(\cos \phi^{\prime}\right) \propto \delta\left(\phi-\phi^{\prime}\right) \tag{47}
\end{equation*}
$$

- This explicitly proves the orthogonality of the p-artons which are eigen functions of the Hecke operator defined.
- The appearance of the Chebyshev polynomials of type II in similar context, have been noticed by Conrey et.al and Serre.
- Next, we intend to study a class of functions for which these properties will be manifest by construction.

Outline

(1) Introduction

- Modular Cusp Forms and L functions
- p-adic wavelets
(2) Vectors for modular cusp forms
- Dual of the q-expansion
- Melin transform of the p-arton
- Hecke operators
- Products of Dirichlet L-functions

Products of Dirichlet L-functions

- We look at a simpler case of a Dirichlet L-function, corresponding to the Dirichlet character ν :

$$
\begin{equation*}
L(s, \nu)=\sum_{n=1}^{\infty} \frac{\nu(n)}{n^{s}}=\prod_{p \in \text { primes }} \frac{1}{\left(1-\nu(p) p^{-s}\right)} \tag{48}
\end{equation*}
$$

- Our goal is to use it to mimic the properties of a modular L-function.

Products of Dirichlet L-functions

- We look at a simpler case of a Dirichlet L-function, corresponding to the Dirichlet character ν :

$$
\begin{equation*}
L(s, \nu)=\sum_{n=1}^{\infty} \frac{\nu(n)}{n^{s}}=\prod_{p \in \text { primes }} \frac{1}{\left(1-\nu(p) p^{-s}\right)} \tag{48}
\end{equation*}
$$

- Our goal is to use it to mimic the properties of a modular L-function.

$$
\begin{align*}
{ }_{2} L(s, \nu)=L(s, \nu) L\left(s, \nu^{*}\right) & =\prod_{p} \frac{1}{\left(1-\nu(p) p^{-s}\right)\left(1-\nu^{*}(p) p^{-s}\right)} \\
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} & =\prod_{p} \frac{1}{\left(1-2 \cos \left(\arg \nu_{p}\right) p^{-s}+p^{-2 s}\right)} \tag{49}
\end{align*}
$$

Products of Dirichlet L-functions

- We look at a simpler case of a Dirichlet L-function, corresponding to the Dirichlet character ν :

$$
\begin{equation*}
L(s, \nu)=\sum_{n=1}^{\infty} \frac{\nu(n)}{n^{s}}=\prod_{p \in \text { primes }} \frac{1}{\left(1-\nu(p) p^{-s}\right)} \tag{48}
\end{equation*}
$$

- Our goal is to use it to mimic the properties of a modular L-function.

$$
\begin{align*}
{ }_{2} L(s, \nu)=L(s, \nu) L\left(s, \nu^{*}\right) & =\prod_{p} \frac{1}{\left(1-\nu(p) p^{-s}\right)\left(1-\nu^{*}(p) p^{-s}\right)} \\
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} & =\prod_{p} \frac{1}{\left(1-2 \cos \left(\arg \nu_{p}\right) p^{-s}+p^{-2 s}\right)} \tag{49}
\end{align*}
$$

- ν^{*} is the complex conjugate of the character ν
- A local factor ${ }_{2} L_{p}(s, \nu)$ at a prime p can be recognized as the generating function of the Chebyshev polynomial of type II.

$$
\begin{equation*}
{ }_{2} \mathrm{~L}_{p}(s, \nu)=\frac{1}{\left(1-2 \cos \left(\arg \nu_{p}\right) p^{-s}+p^{-2 s}\right)}=\sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{p}\right)\right) p^{-s n_{p}} \tag{50}
\end{equation*}
$$

- The Dirichlet L - function is related to the ϑ-series

- Here ν is a primitive Dirichlet character modulo N and $\epsilon=\frac{1}{2}(1-\nu(-1))$ takes the value 0 or 1 depending on whether ν is even or odd, respectively. The Mellin transform of the above is the L-function

(52)
- A local factor ${ }_{2} \mathrm{~L}_{p}(s, \nu)$ at a prime p can be recognized as the generating function of the Chebyshev polynomial of type II.

$$
\begin{equation*}
{ }_{2} \mathrm{~L}_{p}(s, \nu)=\frac{1}{\left(1-2 \cos \left(\arg \nu_{p}\right) p^{-s}+p^{-2 s}\right)}=\sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{p}\right)\right) p^{-s n_{p}} \tag{50}
\end{equation*}
$$

- The Dirichlet L - function is related to the ϑ-series :

$$
\begin{equation*}
\vartheta(z, \nu)=\sum_{n \in \mathbb{Z}} \nu(n) n^{\epsilon} e^{i \pi n^{2} z / N} \tag{51}
\end{equation*}
$$

- Here ν is a primitive Dirichlet character modulo N and $\epsilon=\frac{1}{2}(1-\nu(-1))$ takes the value 0 or 1 depending on whether ν is even or odd, respectively. The Mellin transform of the above is the L-function

- A local factor ${ }_{2} \mathrm{~L}_{p}(s, \nu)$ at a prime p can be recognized as the generating function of the Chebyshev polynomial of type II.

$$
\begin{equation*}
{ }_{2} \mathrm{~L}_{p}(s, \nu)=\frac{1}{\left(1-2 \cos \left(\arg \nu_{p}\right) p^{-s}+p^{-2 s}\right)}=\sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{p}\right)\right) p^{-s n_{\rho}} \tag{50}
\end{equation*}
$$

- The Dirichlet L - function is related to the ϑ-series:

$$
\begin{equation*}
\vartheta(z, \nu)=\sum_{n \in \mathbb{Z}} \nu(n) n^{\epsilon} e^{i \pi n^{2} z / N} \tag{51}
\end{equation*}
$$

- Here ν is a primitive Dirichlet character modulo N and $\epsilon=\frac{1}{2}(1-\nu(-1))$ takes the value 0 or 1 depending on whether ν is even or odd, respectively. The Mellin transform of the above is the L-function :

$$
\begin{equation*}
L(s, \nu)=\frac{(\pi / N)^{\frac{s+\epsilon}{2}}}{2 \Gamma\left(\frac{s+\epsilon}{2}\right)} \int_{0}^{\infty} \frac{d y}{y} y^{\frac{s+\epsilon}{2}} \vartheta(i y, \nu) \tag{52}
\end{equation*}
$$

- Using this the product ${ }_{2} L(s, \nu)$ can be written as :

$$
\begin{align*}
& { }_{2} \mathrm{~L}(s, \nu) \\
& =\frac{(\pi / N)^{s+\epsilon}}{4\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \int_{0}^{\infty} d y_{1} \int_{0}^{\infty} d y_{2}\left(y_{1} y_{2}\right)^{\frac{s+\epsilon}{2}-1} \vartheta\left(i y_{1}, \nu\right) \vartheta\left(i y_{2}, \nu^{*}\right) \\
& =\frac{4(\pi / N)^{s+\epsilon}}{\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \sum_{n=1}^{\infty} a(n) n^{\epsilon} \int_{0}^{\infty} \frac{d y}{y} y^{s+\epsilon} K_{0}\left(\frac{2 \pi n}{N} y\right) \tag{53}
\end{align*}
$$

- We observe that ${ }_{2} L(S, \nu)$ is the Mellin transform of the convolution of the two ϑ-series.
- We know that the ϑ-series has the following transformation property:
- Using this the product ${ }_{2} L(s, \nu)$ can be written as :

$$
\begin{align*}
& 2 \mathrm{~L}(s, \nu) \\
& =\frac{(\pi / N)^{s+\epsilon}}{4\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \int_{0}^{\infty} d y_{1} \int_{0}^{\infty} d y_{2}\left(y_{1} y_{2}\right)^{\frac{s+\epsilon}{2}-1} \vartheta\left(i y_{1}, \nu\right) \vartheta\left(i y_{2}, \nu^{*}\right) \\
& =\frac{4(\pi / N)^{s+\epsilon}}{\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \sum_{n=1}^{\infty} a(n) n^{\epsilon} \int_{0}^{\infty} \frac{d y}{y} y^{s+\epsilon} K_{0}\left(\frac{2 \pi n}{N} y\right) \tag{53}
\end{align*}
$$

- We observe that ${ }_{2} L(s, \nu)$ is the Mellin transform of the convolution of the two ϑ-series.
- We know that the ϑ-series has the following transformation property:
- Using this the product ${ }_{2} L(s, \nu)$ can be written as :

$$
\begin{align*}
& 2 \mathrm{~L}(s, \nu) \\
& =\frac{(\pi / N)^{s+\epsilon}}{4\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \int_{0}^{\infty} d y_{1} \int_{0}^{\infty} d y_{2}\left(y_{1} y_{2}\right)^{\frac{s+\epsilon}{2}-1} \vartheta\left(i y_{1}, \nu\right) \vartheta\left(i y_{2}, \nu^{*}\right) \\
& =\frac{4(\pi / N)^{s+\epsilon}}{\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \sum_{n=1}^{\infty} a(n) n^{\epsilon} \int_{0}^{\infty} \frac{d y}{y} y^{s+\epsilon} K_{0}\left(\frac{2 \pi n}{N} y\right) \tag{53}
\end{align*}
$$

- We observe that ${ }_{2} L(s, \nu)$ is the Mellin transform of the convolution of the two ϑ-series.
- We know that the ϑ-series has the following transformation property:

$$
\begin{equation*}
\vartheta\left(\frac{i}{y}, \nu\right)=\frac{y^{\frac{1}{2}+\epsilon}}{i \epsilon \sqrt{N}} \tau(\nu) \vartheta\left(i y, \nu^{*}\right) \tag{54}
\end{equation*}
$$

- where $\tau(\nu)=\sum \nu(m) e^{2 \pi i m / N}$ is the Gauss.
- Using this the product ${ }_{2} L(s, \nu)$ can be written as :

$$
\begin{align*}
& 2 \mathrm{~L}(s, \nu) \\
& =\frac{(\pi / N)^{s+\epsilon}}{4\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \int_{0}^{\infty} d y_{1} \int_{0}^{\infty} d y_{2}\left(y_{1} y_{2}\right)^{\frac{s+\epsilon}{2}-1} \vartheta\left(i y_{1}, \nu\right) \vartheta\left(i y_{2}, \nu^{*}\right) \\
& =\frac{4(\pi / N)^{s+\epsilon}}{\left(\Gamma\left(\frac{s+\epsilon}{2}\right)\right)^{2}} \sum_{n=1}^{\infty} a(n) n^{\epsilon} \int_{0}^{\infty} \frac{d y}{y} y^{s+\epsilon} K_{0}\left(\frac{2 \pi n}{N} y\right) \tag{53}
\end{align*}
$$

- We observe that ${ }_{2} L(s, \nu)$ is the Mellin transform of the convolution of the two ϑ-series.
- We know that the ϑ-series has the following transformation property:

$$
\begin{equation*}
\vartheta\left(\frac{i}{y}, \nu\right)=\frac{y^{\frac{1}{2}+\epsilon}}{i \epsilon \sqrt{N}} \tau(\nu) \vartheta\left(i y, \nu^{*}\right) \tag{54}
\end{equation*}
$$

- where $\tau(\nu)=\sum_{m=0}^{N-1} \nu(m) e^{2 \pi i m / N}$ is the Gauss.
- As a consequence :

$$
\begin{align*}
& \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i}{y y^{\prime}}, \nu\right) \vartheta\left(\frac{i y^{\prime}}{y}, \nu^{*}\right) \\
& =y^{1+2 \epsilon} \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i y}{y^{\prime}}, \nu\right) \vartheta\left(i y y^{\prime}, \nu^{*}\right) \tag{55}
\end{align*}
$$

- It is interesting to note this property, as the explicit expression on the RHS of (53), are reminiscent of the harmonic Maass-like waveforms, restricted to purely imaginary argument of weight 0 :

- Nevertheless the $y \rightarrow 1 / y$ transformation of the series when $x=0$ is similar to what appears in Koshliakov identities. ν even henceforth.
- As a consequence :

$$
\begin{align*}
& \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i}{y y^{\prime}}, \nu\right) \vartheta\left(\frac{i y^{\prime}}{y}, \nu^{*}\right) \\
& =y^{1+2 \epsilon} \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i y}{y^{\prime}}, \nu\right) \vartheta\left(i y y^{\prime}, \nu^{*}\right) \tag{55}
\end{align*}
$$

- It is interesting to note this property, as the explicit expression on the RHS of (53), are reminiscent of the harmonic Maass-like waveforms, restricted to purely imaginary argument of weight 0 :
$\mathrm{M}_{N}(x+i y) \sim \sqrt{y} \mathbf{f}(x, y, \nu)=\sum_{n=1}^{\infty} a_{n}(n y)^{\epsilon} \sqrt{y} K_{0}\left(\frac{2 \pi n}{N} y\right) e^{2 \pi i n x / N}(56)$
- Nevertheless the $y \rightarrow 1 / y$ transformation of the series when $x=0$ is similar to what appears in Koshliakov identities. ν even
henceforth.
- As a consequence :

$$
\begin{align*}
& \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i}{y y^{\prime}}, \nu\right) \vartheta\left(\frac{i y^{\prime}}{y}, \nu^{*}\right) \\
& =y^{1+2 \epsilon} \int_{0}^{\infty} \frac{d y^{\prime}}{y^{\prime}} \vartheta\left(\frac{i y}{y^{\prime}}, \nu\right) \vartheta\left(i y y^{\prime}, \nu^{*}\right) \tag{55}
\end{align*}
$$

- It is interesting to note this property, as the explicit expression on the RHS of (53), are reminiscent of the harmonic Maass-like waveforms, restricted to purely imaginary argument of weight 0 :

$$
\mathrm{M}_{N}(x+i y) \sim \sqrt{y} \mathbf{f}(x, y, \nu)=\sum_{n=1}^{\infty} a_{n}(n y)^{\epsilon} \sqrt{y} K_{0}\left(\frac{2 \pi n}{N} y\right) e^{2 \pi i n x / N}(56)
$$

- Nevertheless the $y \rightarrow 1 / y$ transformation of the series when $x=0$ is similar to what appears in Koshliakov identities. ν even henceforth.
- The motivation to do this was to construct a p-artonic model for such a function by choosing the p-th factor:

$$
\mathbf{f}_{(p)}(\nu, x)=\sum_{n_{p}=0}^{\infty} a\left(p^{n_{p}}\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)=\sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{p}\right)\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)
$$

- As a consequence

$$
\begin{aligned}
& \left(\mathbf{f}_{(p)}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}\right)\right)=\int_{\mathbb{Q}_{P}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}\left(\nu_{\mathbf{f}}, x\right) \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}, x\right) \\
= & \sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{f}, p}^{*}\right)\right) U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{g}, p}\right)\right) \propto \delta_{\nu_{\mathbf{f}}, \nu_{\mathbf{g}}}
\end{aligned}
$$

- Hence the inner product of their tensor products are orthogonal

- The motivation to do this was to construct a p-artonic model for such a function by choosing the p-th factor:

$$
\mathbf{f}_{(\rho)}(\nu, x)=\sum_{n_{\rho}=0}^{\infty} a\left(p^{n_{p}}\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)=\sum_{n_{p}=0}^{\infty} U_{n_{\rho}}\left(\cos \left(\arg \nu_{p}\right)\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)
$$

- As a consequence :

$$
\begin{align*}
& \left(\mathbf{f}_{(p)}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}\right)\right)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}\left(\nu_{\mathbf{f}}, x\right) \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}, x\right) \\
= & \sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{f}, p}^{*}\right)\right) U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{g}, p}\right)\right) \propto \delta_{\nu_{\mathbf{f}}, \nu_{\mathbf{g}}} \tag{57}
\end{align*}
$$

- Hence the inner product of their tensor products are orthogonal

- The motivation to do this was to construct a p-artonic model for such a function by choosing the p-th factor:

$$
\mathbf{f}_{(\rho)}(\nu, x)=\sum_{n_{\rho}=0}^{\infty} a\left(p^{n_{\rho}}\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)=\sum_{n_{p}=0}^{\infty} U_{n_{\rho}}\left(\cos \left(\arg \nu_{p}\right)\right) \Psi_{1-n_{p}, 0,1}^{(p)}(x)
$$

- As a consequence :

$$
\begin{align*}
& \left(\mathbf{f}_{(p)}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}\right)\right)=\int_{\mathbb{Q}_{p}^{\times}} d^{\times} x \mathbf{f}_{(p)}^{*}\left(\nu_{\mathbf{f}}, x\right) \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}, x\right) \\
= & \sum_{n_{p}=0}^{\infty} U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{f}, p}^{*}\right)\right) U_{n_{p}}\left(\cos \left(\arg \nu_{\mathbf{g}, p}\right)\right) \propto \delta_{\nu_{\mathbf{t}}, \nu_{\mathbf{g}}} \tag{57}
\end{align*}
$$

- Hence the inner product of their tensor products are orthogonal :

$$
\begin{align*}
\left(\mathbf{f}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}\left(\nu_{\mathbf{g}}\right)\right) & =\prod_{p}\left(\mathbf{f}_{(p)}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}_{(p)}\left(\nu_{\mathbf{g}}\right)\right) \\
& =\prod_{p} \sum_{n_{\rho}=0}^{\infty} a_{\mathbf{f}}^{*}\left(p^{n_{p}}\right) a_{\mathbf{g}}\left(p^{n_{\rho}}\right) \\
& =\sum_{n=1}^{\infty} a_{\mathbf{f}}^{*}(n) a_{\mathbf{g}}(n) \tag{58}
\end{align*}
$$

- An analogous inner product exists on the space of Maass-like wave forms in the rectangular region $\left\{-\frac{N}{2}<|x| \leq \frac{N}{2}, y>0\right\}$:

$$
\begin{aligned}
& \left\langle\mathbf{f}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}\left(\nu_{\mathbf{g}}\right)\right\rangle \\
& =\sum_{m, n=1}^{\infty} a_{\mathbf{f}}^{*}(m) a_{\mathbf{g}}(n) \int_{-N / 2}^{N / 2} d x e^{2 \pi i(n-m) x / N} \int_{0}^{\infty} \frac{d y}{y} K_{0}\left(\frac{2 \pi m y}{N}\right) K_{0}\left(\frac{2 \pi n y}{N}\right)
\end{aligned}
$$

- Which yields the same sum over the coefficients $a_{f}^{*}(n) a_{g}(n)$
- The above inner products can be related to the inner product of the corresponding L-functions
 $a_{\mathbf{f}}^{*}(n) a_{\mathbf{g}}(m) \delta_{m n}$

- An analogous inner product exists on the space of Maass-like wave forms in the rectangular region $\left\{-\frac{N}{2}<|x| \leq \frac{N}{2}, y>0\right\}$:

$$
\begin{aligned}
& \left\langle\mathbf{f}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}\left(\nu_{\mathbf{g}}\right)\right\rangle \\
& =\sum_{m, n=1}^{\infty} a_{\mathbf{f}}^{*}(m) \mathrm{a}_{\mathbf{g}}(n) \int_{-N / 2}^{N / 2} d x e^{2 \pi i(n-m) x / N} \int_{0}^{\infty} \frac{d y}{y} K_{0}\left(\frac{2 \pi m y}{N}\right) K_{0}\left(\frac{2 \pi n y}{N}\right)
\end{aligned}
$$

- Which yields the same sum over the coefficients $a_{f}^{*}(n) a_{\mathbf{g}}(n)$ the corresponding L-functions

- An analogous inner product exists on the space of Maass-like wave forms in the rectangular region $\left\{-\frac{N}{2}<|x| \leq \frac{N}{2}, y>0\right\}$:

$$
\begin{aligned}
& \left\langle\mathbf{f}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}\left(\nu_{\mathbf{g}}\right)\right\rangle \\
& =\sum_{m, n=1}^{\infty} a_{\mathbf{f}}^{*}(m) \mathrm{a}_{\mathbf{g}}(n) \int_{-N / 2}^{N / 2} d x e^{2 \pi i(n-m) x / N} \int_{0}^{\infty} \frac{d y}{y} K_{0}\left(\frac{2 \pi m y}{N}\right) K_{0}\left(\frac{2 \pi n y}{N}\right)
\end{aligned}
$$

- Which yields the same sum over the coefficients $a_{f}^{*}(n) a_{\mathbf{g}}(n)$
- The above inner products can be related to the inner product of the corresponding L-functions:

$$
\begin{align*}
\left\langle\mathbf{f}\left(\nu_{\mathbf{f}}\right) \mid \mathbf{g}\left(\nu_{\mathbf{g}}\right)\right\rangle & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{\mathbf{f}}^{*}(n) a_{\mathbf{g}}(m) \delta_{m n} \tag{59}\\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t \sum_{n=1}^{\infty} \frac{a_{\mathbf{f}}^{*}(n)}{m^{\frac{1}{2}-i t}} \sum_{n=1}^{\infty} \frac{a_{\mathbf{g}}(n)}{n^{\frac{1}{2}+i t}} \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t_{2} \mathrm{~L}_{\mathbf{f}}^{*}\left(\frac{1}{2}-i t, \nu_{\mathbf{f}}\right){ }_{2} \mathrm{~L}_{\mathbf{g}}\left(\frac{1}{2}+i t, \nu_{\mathbf{g}}\right)
\end{align*}
$$

- The final expression, although although obtained via some formal manipulation, is a Perseval type identity, interpreted as an inner product $\left\langle 2 L_{f} \mid 2 L_{g}\right\rangle$
- Hence the family of L-functions seem to be orthogonal.
- The expression is not verified numerically.
- The final expression, although although obtained via some formal manipulation, is a Perseval type identity, interpreted as an inner product $\left\langle 2 L_{f} \mid 2 L_{g}\right\rangle$
- Hence the family of L-functions seem to be orthogonal.
- The expression is not verified numerically.
- The final expression, although although obtained via some formal manipulation, is a Perseval type identity, interpreted as an inner product $\left\langle 2 L_{f} \mid 2 L_{g}\right\rangle$
- Hence the family of L-functions seem to be orthogonal.
- The expression is not verified numerically.

Outlook

- We leave the study of the action of the group $G L\left(2, \mathbb{Q}_{p}\right)$ on these p-artons to the future. This might have connection to the classical theory of Automorphic forms.
- The construction is also suggestive of a holographic correspondence, where the data of a function f in the upper half of the complex plane is related to $\otimes_{p} \mathbb{Q}_{p}$, which in turn is related to $\mathbb{R}=\partial \mathbb{H}$
- Possible interpretation of the ${ }_{2} L(s, f)$ as the Mellin dual of the p-artons and hence to construct Hecke-'like' operators on them.

Thank You

Outlook

- We leave the study of the action of the group $G L\left(2, \mathbb{Q}_{p}\right)$ on these p-artons to the future. This might have connection to the classical theory of Automorphic forms.
- The construction is also suggestive of a holographic correspondence, where the data of a function f in the upper half of the complex plane is related to $\otimes_{p} \mathbb{Q}_{p}$, which in turn is related to $\mathbb{R}=\partial \mathbb{H}$
- Possible interpretation of the $2_{2} L(s, f)$ as the Mellin dual of the p-artons and hence to construct Hecke-'like' operators on them.

Outlook

- We leave the study of the action of the group $G L\left(2, \mathbb{Q}_{p}\right)$ on these p-artons to the future. This might have connection to the classical theory of Automorphic forms.
- The construction is also suggestive of a holographic correspondence, where the data of a function f in the upper half of the complex plane is related to $\otimes_{p} \mathbb{Q}_{p}$, which in turn is related to $\mathbb{R}=\partial \mathbb{H}$
- Possible interpretation of the ${ }_{2} L(s, f)$ as the Mellin dual of the p-artons and hence to construct Hecke-'like' operators on them.

Thank You

